Learning to Expand Audience via Meta Hybrid Experts and Critics for Recommendation and Advertising

Yongchun Zhu^{1, 3, 4}, Yudan Liu³, Ruobing Xie³, Fuzhen Zhuang^{2, 5}, Xiaobo Hao³, Kaikai Ge³, Xu Zhang³, Leyu Lin³, Juan Cao^{1, 4}

1. Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China

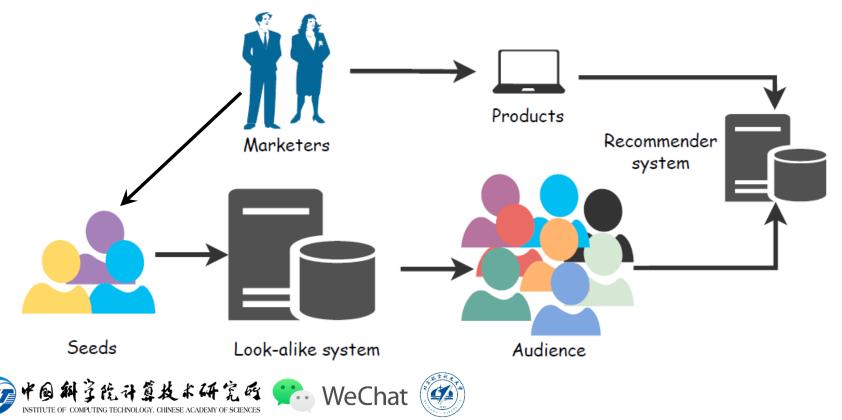
2. Institute of Artificial Intelligence, Beihang University, Beijing 100191, China

3. WeChat Search Application Department, Tencent, China

4. University of Chinese Academy of Sciences, Beijing, China

5. Xiamen Data Intelligence Academy of ICT, CAS, China

Audience expansion (Look-alike modeling)



- Internet companies conduct **hundreds of marketing campaigns** to promote products, contents, and advertisements every day.
- The **audience expansion** technique (**look-alike modeling**) is the key which has been deployed in many online systems.

Challenges

- The tasks of various campaigns can cover diverse contents.
- A certain campaign gives a seed set that can only cover **limited users**.

Existing methods

- Rule-based methods: specific demographic tags
- Similarity-based methods: artificially pre-defined similarity
- One-stage model-based methods: overfitting
- Two-stage model-based methods: **unsatisfying generalization ability and ignore the task relationships**

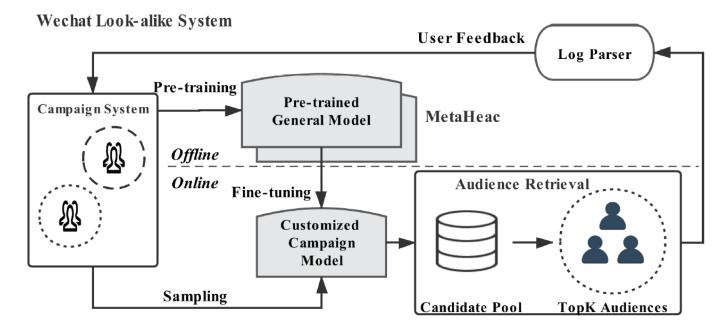
Two stages

- Offline stage: train a **general model** with various existing marketing campaigns.
- Online stage: a **customized model** is learned by **fine-tuning** the pre-trained general model for the certain campaign.

Two key ideas for the general model

- The general model is expected to learn the ability to expand audiences.
- The general model should learn **transferable knowledge** from various marketing campaigns.

WeChat Look-alike system



- Offline stage: maintain a pre-trained general model that can adapt fast to new campaigns.
- Online stage: find potential audiences for a certain campaign with a customized model.

Definitions

Campaign c:	$c = \{x_1^c,, x_N^c\}$
A user:	$u = \{x^u_1,, x^u_M\}$
Seed users:	${\cal S}_{[c]}$
Samples of certain campaign:	$\mathcal{D}_{[c]}$
User candidate pool:	U
Expanded audience:	$\mathcal{U}_{[c]}$

Learn to expand audience

The general model: $f(\cdot; \theta)$

A customized model: $f_{[c]}(\cdot; \theta_{[c]})$

Binary prediction: $\hat{p} = f_{[c]}(c, u; \theta_{[c]})$

Two-phases simulation

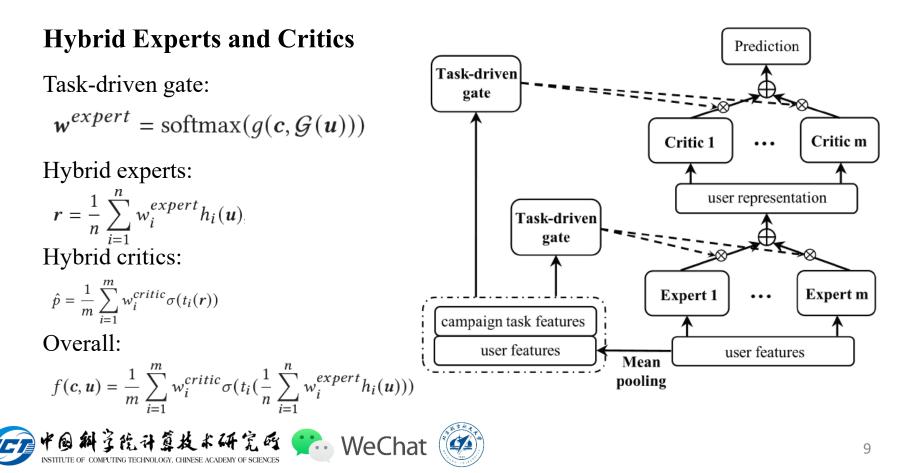
Understanding phase: $\theta_{[c]} = \theta - \alpha \frac{\partial \mathcal{L}_a}{\partial \theta}$ $\mathcal{L}_a(\theta) = \sum_{\mathcal{D}^a_{[c]}} [-y \log \hat{p} - (1-y) \log(1-\hat{p})]$

Finding phase:

$$\theta = \theta - \beta \frac{\partial \mathcal{L}_b(\theta_{[c]})}{\partial \theta} = \theta - \beta \frac{\partial \mathcal{L}_b(\theta_{[c]})}{\partial \theta_{[c]}} \frac{\partial \theta_{[c]}}{\partial \theta}$$

Algorithm 1 Training MetaHeac from a meta-learning perspective.

Input: Given hundreds of marketing campaign dataset $\mathcal{D}_{[c]}$. **Input**: The general model f_{θ} . **Input**: The learning rate α , β . 1. randomly initialize θ . 2. while not converge do: 3. sample batch of training tasks $\{\mathcal{T}_1, ..., \mathcal{T}_n\}$. for $\mathcal{T}_i \in {\mathcal{T}_1, ..., \mathcal{T}_n}$ do: 4. \mathcal{T}_{i} contains two disjoint sets $\mathcal{D}_{[c]}^{a}, \mathcal{D}_{[c]}^{b}$ 5. evaluate loss $\mathcal{L}_a(\theta)$ with $\mathcal{D}^a_{[c]}$ 6. compute updated parameter $\theta_{[c]} = \theta - \alpha \frac{\partial \mathcal{L}_a(\theta)}{\partial \theta}$ 7. evaluate loss $\mathcal{L}_b(\theta_{[c]})$ with $\mathcal{D}_{[c]}^b$ 8. 9. end update $\theta = \theta - \beta \sum_{\mathcal{T}_i \in \{\mathcal{T}_1, \dots, \mathcal{T}_n\}} \frac{\partial \mathcal{L}_b(\theta_{[c]})}{\partial \theta}$ 10. 11. **end**



Overall procedure:

Overall structure:
$$f(c, u) = \frac{1}{m} \sum_{i=1}^{m} w_i^{critic} \sigma(t_i(\frac{1}{n} \sum_{i=1}^{n} w_i^{expert} h_i(u)))$$

Offline stage: In this stage, we learn the general look-alike model with the meta-learning framework of the **two-phases simulation** on all existing marketing campaigns. **Online stage**: For a new marketing campaign *c*, given the dataset $D_{[c]}$ of the new campaign, we **fine-tune** the general look-alike model. And we can obtain a **customized look-alike model**. Then, the customized model can be directly exploited to find the potential audiences

Research questions

- **RQ1** Does our proposed MetaHeac outperform other look-alike approaches in different tasks?
- **Q** RQ2 Does this MetaHeac framework get improvement on the performance of WeChat Look-alike system?
- **RQ3** What are the effects of meta-learning, hybrid experts, and hybrid critics in our proposed MetaHeac?

Datasets

- Tencent Look-alike Dataset
- WeChat Look-alike Dataset

Two test groups

- $\Box \quad \text{Limited seeds } \mathcal{S}_{[c]} \leq T$
- Sufficient seeds $S_{[c]} > T$

Baselines

- □ One-stage methods: LR, MLP_one-stage
- □ Two-stage methods (pre-train emb): MLP+emb, Pinterest, Hubble
- Two-stage methods (pre-train all): : MLP+pre-training, Shared-Bottom+pre-training, MMoE+pre-training

Metrics: AUC, P@K%, R@K%

$$\mathbb{P}@K\% = \frac{|\mathcal{U}_{at} \cap \mathcal{U}_{cdd,K}|}{|\mathcal{U}_{cdd,K}|}, \quad \mathbb{R}@K\% = \frac{|\mathcal{U}_{at} \cap \mathcal{U}_{cdd,K}|}{|\mathcal{U}_{at}|}$$

Offline Results (RQ1)

- The effectiveness of pre-training embedding.
- The effectiveness of pre-training networks.
- □ The effectiveness of MetaHeac.

		Pre-trained $S_{[c]} \leq T$		$S_{[c]} > T$					
Dataset	Method	Emb	Network	AUC	P@5%	R@5%	AUC	P@5%	R@5%
Tencent Look-alike Dataset	LR	-	-	0.5942	0.1015	0.1044	0.6824	0.1910	0.2006
	MLP_one-stage	-	-	0.5928	0.1048	0.1081	0.6910	0.1797	0.1888
	MLP+emb	\checkmark	-	0.6624	0.1881	0.1930	0.7060	0.2118	0.2224
	Pinterest	\checkmark	-	0.6245	0.1635	0.1665	0.6802	0.1687	0.1770
	Hubble	\checkmark	-	0.6797	0.2056	0.2110	0.7085	0.2171	0.2279
	MLP+pre-training	\checkmark	\checkmark	0.7117	0.2325	0.2384	0.7082	0.2136	0.2242
	Shared-Bottom+pre-training	\checkmark	\checkmark	0.6936	0.2198	0.2258	0.7089	0.2144	0.2250
	MMoE+pre-training	\checkmark	\checkmark	0.6977	0.2224	0.2280	0.7088	0.2150	0.2257
	MetaHeac	\checkmark	\checkmark	0.7239**	0.2489**	0.2554^{**}	0.7142**	0.2244^{**}	0.2356**
	Improve			1.7%	7.0%	7.1%	0.8%	4.7%	4.7%
	LR	-	-	0.5654	0.1351	0.0742	0.6711	0.2166	0.1182
	MLP_one-stage	-	-	0.6663	0.2477	0.1363	0.6970	0.2605	0.1419
	MLP+emb	\checkmark	-	0.7143	0.3058	0.1684	0.7217	0.2988	0.1628
	Pinterest	\checkmark	-	0.6289	0.1947	0.1066	0.7044	0.2639	0.1439
WeChat Look-alike Dataset	Hubble	\checkmark	-	0.7391	0.3524	0.1936	0.7243	0.3062	0.1668
	MLP+pre-training	\checkmark	\checkmark	0.7440	0.3473	0.1908	0.7272	0.3030	0.1673
	Shared-Bottom+pre-training	\checkmark	\checkmark	0.7271	0.3093	0.1700	0.7275	0.3052	0.1663
	MMoE+pre-training	\checkmark	\checkmark	0.7368	0.3265	0.1797	0.7292	0.3051	0.1675
	MetaHeac	\checkmark	\checkmark	0.7607**	0.3839**	0.2110**	0.7323*	0.3133*	0.1707*
	Improve			2.3%	8.9%	9.0%	0.4%	2.3%	1.9%

Table 3: Online A/B testing results.

Scenarios	Exposure	Conversion	CVR
video	+3.07%	+10.18%	+7.90%
advertisements	+0.65%	+15.50%	+15.40%
article	+3.18%	+9.23%	+4.64%

Online Results (RQ2)

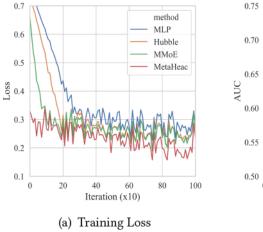
- □ The effectiveness of MetaHeac on video promotion.
- □ The effectiveness of MetaHeac on **advertisement** promotion.
- □ The effectiveness of MetaHeac on **article** promotion.

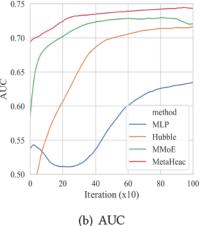
Table 4: Ablation Study on Tencent Look-alike Dataset. HC denotes Hybrid Critics, and HE denotes Hybrid Experts.

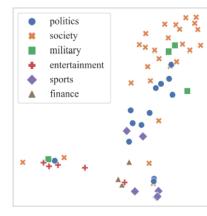
Method	$ $ $S_{[c]}$	$\leq T$	$S_{[c]} > T$		
Method	AUC	P@5%	AUC	P@5%	
MetaHeac w/o HC	0.7199	0.2472	0.7115	0.2220	
MetaHeac w/o HE	0.7181	0.2419	0.7112	0.2193	
MetaHeac w/o Meta	0.7173	0.2431	0.7107	0.2180	
MetaHeac	0.7239	0.2489	0.7142	0.2244	

Ablation Study (RQ3)

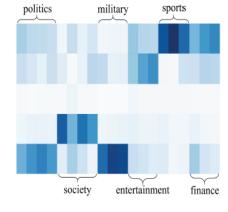
- □ The effectiveness of Hybrid Critics.
- □ The effectiveness of Hybrid Experts.
- □ The effectiveness of two-phases meta-learning framework.







(c) Average Representations of Seeds



(d) Gate of Hybrid Critics

Other Analysis (RQ3)

□ Better Convergence.

□ The ability to capture the relationships among tasks.

Name: Yongchun Zhu | Email: zhuyongchun18s@ict.ac.cn

