Adaptively Transfer Category-classifier for
Handwritten Chinese Character Recognition
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Motivation

Handwritten Chinese Character Recognition (HCCR) plays an
important role in real-world applications.
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Motivation

Most research and competition of HCCR are focus on some standard
data sets. The performance of machine on the data sets has surpassed
humans.
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Motivation

Assume that we want to make an Intelligence Education software which
need to recognize the handwritten Chinese characters of middle school
students. However, we do not have enough labeled data. How do we do 1t?

Label enough data to train the model. x

Use extra HCCR data sets directly.
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MOtiV&tiOn The fonts are diverse.
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(a) HCL2000 (b) CASTA-HWDBI. 1
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Motivation

Assume that we want to make a Intelligence Education software which
need to recognize the handwritten Chinese characters of middle school
students. However, we do not have enough labeled data. How do we do 1t?

Label enough data to train the model. x

Use extra HCCR data sets directly. x

How can we use extra HCCR data sets to
help real-world applications?
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Motivation

Iransier learning!
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Problem Definition

T g

1—=1

Source domain — {1“ ?}1 }
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Source domain

. A batch of samples
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Adaptive category-
classifier transfer
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I Predict
Both source and target domain share the parameters
Of five convolutional layers and three pooling layers ‘
for knowledge transfer {_ —_
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Fig. 2. The network structure of ATC—HCCR
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Lambda is a trade-off parameter, while gamma 1s for
transferring categoty-classifier between the source and



Model

Algorithm 1 Transfer Learning with Adaptively Transfer Category-classifier

Input: Given one source domain Dy {CEES), -y,gs)}\?;l . and one target domain D; = DF U

DY = {2V, yzt)}h_l U{x (t)}\z_l, trade-off parameters A and weights -, the number of nodes
in full connected layer and label layer, £ and c.
Output: Results of x; belongs to the vector of probability for each category.

Use both D, and DF to train AlexNet.

Use the parameters in Step1’s model to initialize ATC-HCCR shown in Figure 2.
Choose a batch of instances from Ds or DF as input.

Use AdamOptimizer with loss function Eq. (5) to update all variables.

Continue Step3 and Step4 until the algorithm converges.

Input DY and get the vector of probability for each category that z; belongs to.
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Experiments

Table 2. The statistics of three data sets.

CASIA-
HCL2000 HWDB LI MSS-HCC

#category| 3,755 3,755 27
#instance 3,755,000 1,126,500 5,920

HCL2000 and CASIA-HWDBI.1
are standard HCCR data sets,
while MSS-HCC collected by
ourselves is written by middle
school students. MSS-HCC is
written much in messy.
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The original data is shown as above. We do
not consider the split algorithm and we
manually select clear pictures to form the
MSS-HCC data set.
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Experiments

and ATC-HCCR.

Observations:

® The performance improves with
the increasing values of sampling
radio of target domain data as
labeled data.

® Applying transfer learning for
tackling HCCR problems is
important.

® Our model ATC-HCCR achieves
the best results over all baselines.
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HCL2000 — CASIA-HWDBI1.1

Mean

1.67% 3.33% 5% 6.67% 8.33%

10%

AlexNet-HCCR(s)

63.30

63.31 63.40 63.48 63.53

63.41 63.41

AlexNet-HCCR(t)

30.83

61.64 79.52 78.04 81.01

81.85 68.82

AlexNet-HCCR(s+t)

73.07

76.78 79.52 81.13 82.24

82.08 79.14

preDNN

73.01

76.89 79.37 81.47 82.47

83.56 79.46

ATC-HCCR

76.79

79.78 82.37 84.13 85.08

85.06 82.20

HCL2000 — MSS-HCC

5%

10% 15% 20% 25%

30% Mean

AlexNet-HCCR(s)

61.49

63.18 62.61 62.75 63.92

64.30 63.04

AlexNet-HCCR(1)

66.44

82.83 89.77 90.96 92.57

93.00 85.93

AlexNet-HCCR(s+t)

86.31

88.95 91.02 91.55 92.22

94.76 90.80

preDNN

86.93

90.69 92.61 93.45 93.90

94.61 92.03

ATC-HCCR

87.76

01.12 93.24 93.71 94.57

94.88 92.55

CASIA-HWDBI.1 — MSS-HCC

Mean

5%

10% 15% 20% 25%

30%

AlexNet-HCCR(s)

76.01

78.38 78.27 78.12 78.38

77.87 77.84

AlexNet-HCCR(1)

66.44

82.83 89.77 90.96 92.57

93.00 85.93

AlexNet-HCCR(s+t)

89.48

01.38 92.27 93.67 94.21

94.98 92.67

preDNN

89.19

02.64 92.74 93.58 94.61

94.98 92.96

ATC-HCCR

90.98

93.14 93.80 94.55 94.68

95.29 93.74

Table 3. The performance (%) comparison on three data sets among AlexNet-HCCR, preDNN
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Conclusion

* As there 1s little work about transfer learning for HCCR, based on
Alexnet, we propose a new network framework by adaptively
transferring category-classifier for HCCR problems.

*  We also collect a small set of much more challenging HCCR data, and
finally conduct experiments on three data sets to demonstrate the
effectiveness of our model.
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